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We apply the Merrifield variational method to the Holstein molecular crystal model inD dimensions to
compute nonadiabatic polaron band energies and Franck-Condon factors at general crystal momenta. We
analyze these observable properties to extract characteristic features related to polaron self-trapping and potential
experimental signatures. These results are combined with others obtained by the Global-Local variational
method in 1D to construct a polaron phase diagram encompassing all degrees of adiabaticity and all electron-
phonon coupling strengths. The polaron phase diagram so constructed includes disjoint regimes occupied by
smallpolarons,large polarons, and a newly-defined class ofcompactpolarons, all mutually separated by an
intermediate regime occupied by transitional structures.

1. Introduction

The theory of polarons has undergone an evolution in recent
years that has substantially improved our ability to put solid,
quantitative accuracy to matters that have heretofore enjoyed
only semiquantitative estimation or qualitative characterization.
This can be said in view of a convergence of results1 that has
been found in a number of independent and high-quality
methods that have been brought to bear in particular on the
analysis of the Holstein molecular crystal model.2,3 Important
among these methods are cluster diagonalization,4-7 density
matrix renormalization group,8 quantum Monte Carlo,9-14 and
certain variational approaches.1,15-25 Though quite distinct in
their conception and implementation, these methods have all
been found to be in deep and broad quantitative agreement over
wide regions of the polaron parameter space.

Our own effort in this area has relied mainly upon the
Global-Local variational method, certain results of which will
figure in the present work. A significant part of this effort has
dealt with the problem of developing a reliable and interpretable
polaron phase diagram on which can be clearly delineated the
distinct regions of the polaron parameter space where distinct
classes of polaron structure may be found. In the course of this
development, some familiar notions that have become part of
the polaron lore have had to be revised, including the real
physical nature of the large polaron22,23,26and the meaning of
self-trapping inD dimensions.27,28

Here, we continue to be concerned with the polaron phase
diagram, but in a manner and regime that are complementary
to what has already been developed. For practical and formal
reasons, the utility of the Global-Local variational method
deteriorates significantly when the fundamental electron transfer
integrals are small and the electron-phonon coupling is weak;
as a practical matter, this limitation excludes a sufficient portion

of the nonadiabatic regime to preclude a meaningful assessment
of the self-trapping transition there. Necessarily, therefore, what
we have been able to say about the polaron phase diagram in
the nonadiabatic regime has been based on extrapolations from
more adiabatic behaviors.

The nonadiabatic regime is important to many narrow-band
systems and particularly to molecular crystals for which the
Holstein model was originally formulated.2,3,29-33 Polaron
properties in the nonadiabatic regime generally depend quite
smoothly on the basic system parameters, without the relative
abruptness that tends to emerge in the adiabatic regime, and
the low orders of perturbation theory, either weak-coupling or
strong-coupling, tend to do a reasonable job of capturing most
behaviors. Paradoxically, perhaps, it is this relative unremark-
ableness of the nonadiabatic regime that raises some of the
questions motivating our study, in particular, how the dramatic
character of the self-trapping transition that is so obvious at
high adiabaticity dissembles into relative obscurity, and how,
as a practical matter, its lingering presence may be recognized
in observable polaron properties.

We approach this problem through the use of the Merrifield
variational method.18,34 The Merrifield method can be viewed
as an antecedent to the Global-Local method in that it is the
first in a sequence of increasingly refined variational methods
leading to the Global-Local method. Although the Merrifield
method suffers some very characteristic limitations that restrict
its usefulness as a tool for implementing polaron theory at
general points in the polaron parameter space, it is at its best in
the nonadiabatic regime where computation by the more general
Global-Local method becomes difficult, and is thus well-suited
to the present task. Moreover, owing to its relative simplicity,
it is possible to pursue results inD dimensions, and to obtain
some degree of analytical guidance and support for numerical
studies.
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To locate the self-trapping transition, we need to analyze
observable physical properties that take on distinguishable
asymptotic behaviors on each side of the transition and
objectively locate a boundary that discriminates between these
behaviors. Here, we focus on two properties that are particularly
important to spectral studies, the polaron ground-state energy
(related in well-known ways to Stokes shifts) and Franck-
Condon factors (related in well-known ways to oscillator
strengths). As a function of the electron-phonon coupling
strengthg, the ground-state energy generally exhibits a “knee”
between distinct weak- and strong-coupling trends that can be
located and followed in parameter space to develop a self-
trapping line. Franck-Condon factors generally exhibit a
distorted Gaussian dependence on the coupling strength, allow-
ing the central peak region (weak coupling) to be objectively
distinguished from the outer tail region (strong coupling).

We use the Holstein Hamiltonian2,3 on a D-dimensional
Euclidean lattice

in which an
† creates a single electronic excitation in the rigid-

lattice Wannier state at siten and bn
† creates a quantum of

vibrational energypω in the Einstein oscillator at siten. TheJi

are the nearest-neighbor electronic transfer integrals along the
primitive crystal axes, and theEi are unit vectors associated with
the primitive translations. The above model encompasses all
Bravais lattices, with the different lattice structures appearing
only in the relative values of the hopping integralsJi. For
simplicity in the following, we use terms appropriate to
orthorhombic lattices in which conventionallyi ) x, y, or z;
however, all results hold for lattices of lower symmetry with
appropriate transcription of these labels to those of the primitive
axes.

We use the following Fourier conventions for ladder operators
(c† ) a†, b†) and scalars:

It is convenient in the following to characterize tunneling
strength inD dimensions in part through a parameterJ ) ∑iJi;
when restricting discussion to isotropic tunneling, we use the
notationJ ) Ji, such thatJ ) DJ in those cases.

For the most part in this paper, we limit our discussion to
the nonadiabatic regime, defined by the conditionJ/pω < 1/4.
Polarons at such smallJ/pω are quite narrow since we know
that thelargestpolaron in any dimension (as characterized by
the size of the phonon cloud) has a width of (2Ji/pω)1/2 along
thei axis;26 since noJi/pω is greater than 1/4 in the nonadiabatic
regime, no polaron in this regime has a width greater than a
lattice constant, even at vanishing coupling. Thus, the variational
space in which the problem is solved numerically neednot be
large to contain the complete polaron. This ability to contain
the present problem in a small real-space volume facilitates
computation considerably.

The Merrifield trial state may be written as

in which the{λq
K} are the variational parameters specifying the

coherent state amplitude in the phonon modeq. Though these
trial states are delocalized and satisfy the appropriate Bloch
symmetry condition, and thus any property measured in the
“lab” frame is uniform over the lattice, the internal structure of
these delocalized states is determined by exciton-phonon
correlations that are essentially local in character. Here, that
local character is such that the electronic component located at
siten is associated with a “phonon cloud” centered on that site,
determined by the set of lattice amplitudes{λq

K}.
We evaluate the variational energy band as the expectation

value of the Holstein Hamiltonian

whereinS(i
K is the Debye-Waller factor

Minimization of EK with respect toλq
K/ leads to the self-

consistency equations forλq
K:

where Si
K and (Φi

K are the magnitudes and phases of the
complex Debye-Waller factorsS(i

K . This shows the optimalλq
K

to be real, and establishes the “sum rule”

valid at anyK and in any number of dimensions.
When any particularJi/pω f 0, λq

K loses any dependence on
qi andκi, becoming “flat” in those variables. The Debye-Waller
factor (Si

K) and phase (Φi
K) associated with that direction drop

out of the problem, and the real-space phonon amplitudesλn
K

become completely localized along thei axis. Although a
disparity among the relative magnitudes of severalJi can result
in a polaron that is in respects “small” in certain directions and
“large” in others, there is not a distinct self-trapping transition
associated with eachJi.28 This can be seen in the present context
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in the fact that the Debye-Waller factorSz
K associated with a

vanishingJz does not approach e-g2, which would be expected
of 1D small polarons along thez axis, but a quantity that is
characteristic of the 2D polaron structure in the two surviving
dimensions, whether this be large-polaron-like or small-polaron-
like.

The sum rule continues to be satisfied as dimensions are
turned off or on (e.g.,Jz f 0 in three dimensions), since

Thus, there is no need for dimension-specific formulation if
dimensions are controlled through the tuning of{Ji/pω}.

Owing to the symmetries (eq 11) and the periodicity of the
reciprocal lattice,Φi

K vanishes at the Brillouin zone center and
everywhere on the Brillouin zone boundary. Consequently, we
have certain special values that play a significant role in the
following. Denoting the reciprocal lattice origin by0 and any
of the most extreme points of the Brillouin zone byπ (κi ) (π
along each axis), we find

The zone-center phonon amplitudes (eq 14) are well-behaved
under all circumstances because the denominators, similar to
those of weak-coupling perturbation theory, are sums of bounded
positive terms. The zone-edge relation (eq 15), on the other hand,
suggests the possibility of encountering large or divergent
phonon amplitudes for phonon wave vectors near the Brillouin
zone boundary if tunneling is sufficiently strong (J/pω g 1/4)
and the Debye-Waller factors{Si

π} are sufficiently near unity
(as generally occurs when electron-phonon coupling is suf-
ficiently weak; see the 1D examples below). This potential
divergence is both a real physical phenomenon and a generator
of artifacts in the Merrifield method.

The reality of the phenomenon is due to the resonance or
near-resonance that can occur between the states of the one-
phonon continuum and zone-edge states of both the free electron
and the self-consistent polaron when the energy gap between
the latter and the one-phonon continuum is small. This
circumstance occurs in any number of dimensions when
J/pω J 1/4 andg is small. Under these circumstances, only a
very small amount of electron-phonon coupling is needed to
produce intense interactions that flatten the outer polaron energy
band (level repulsion) and create heavy phonon clouds strongly
modulated by the character of the zone-edge phonons.

The Merrifield method accommodates the nearness of the one-
phonon continuum by producing strong distortions of the
variational amplitudes of a qualitatively appropriate nature; the
phonon amplitudes become highly focused around a single-
phonon wave vector, in clear approximation to the single-phonon
quantum that constitutes the exactg f 0 state. However,
because the Merrifield state is not well-equipped to emulate
the highly quantum mechanical character of such states, the
energy balance central to the variational principle is distorted
and the variational energy bound is raised. Consequently, rather

than experiencing the expected strong repulsion from the one-
phonon continuum, the outer-zone portions of Merrifield energy
bands flatten relatively weakly and cannot be taken as ap-
propriately indicative of the polaron structure when
J/pω J 1/4.

Although one cannot rely upon the numerical values of
Merrifield band energies influenced by resonances with the one-
phonon continuum, it is nonetheless true that the general
character of the variational lattice state responds to such
resonance effects in a reasonably appropriate way, provided that
J/pω e 1/4. This suggests that changes in the variationally-
determined Franck-Condon factors, as very direct figures of
merit for this general character, may reasonably indicate where
the essential changes in polaron structure occur. Thus, in the
following we rely upon Franck-Condon factors as our primary
diagnostic of outer-zone polaron structure. Although this proves
to be a very practical election, it is a choice that is in respects
forced upon us by the limitations of the Merrifield method. As
a choice that in the larger picture should be sufficient, but not
necessary, other theoretical methods not so limited should find
similar behavior in the band energies and other polaron
properties near the band edge.

2. The 1D Case

In principle, the set of eqs 8-10 can be closed in theSi
K and

Φi
K alone, greatly reducing the size of the self-consistency

problem to be solved. This is of practical advantage only in
one dimension, however, since the reduction to quadratures
involved in higher dimensions does not significantly facilitate
computation.

Replacing the summations in eqs 9 and 10 with 1D integra-
tions, one arrives at the self-consistency equations first obtained
by Merrifield:

and

Using eqs 16-18 in eq 8 yields the full set of variational phonon
amplitudes such as shown in Figure 1.

One may further obtain the energy-momentum relation

Figure 1. Sample surface showing the (real) variational amplitudes
λq

κ in the 1D case forJ/pω ) 0.2 andg ) 1.

lim
Jzf0

∑
nx,ny,nz

λ(nx,ny,nz)
(κx,κy,κz) ) ∑

nz,ny,nz

λ(nx,ny,)
(κx,κy) δnz,0

) ∑
nx,ny

λ(nx,ny)
(κx,κy) ) g (13)

λq
0 )

gpω

pω + ∑
i)1

D

[4JiSi
0 sin2(qi/2)]

(14)

λq
π )

gpω

pω - ∑
i)1

D

[4JiSi
π sin2(qi/2)]

(15)

Sκ ) exp(-g2∆κ) (16)

Φκ ) -g2∆κ(2JSκ/pω) sin(Φκ - κ) (17)

∆K ) {[1 + (2JSκ/pω) cos(Φκ - κ)]2 -
(2JSκ/pω)2}-3/2 (18)

Eκ ) g2pω(∆κ - 2[∆κ]1/3) -
2JSκ(1 - g2∆κ) cos(κ - Φκ) (19)
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The price paid for the compactness of this expression is the
self-consistency condition that makes eq 19 awkward to analyze;
however, it can be shown that eq 19 agrees with weak-coupling
perturbation theory through second order ing, and strong-
coupling perturbation theory through first order inJ/pω. The
latter is actually a shortcoming of the Merrifield method since
important contributions from second order quickly dominate the
first order of strong-coupling perturbation theory; however, the
first order is sufficient to properly determine that in the
J/pω f 0 limit the knee in the dependence ofEκ on g at anyκ

is given by

The same differential criterion can be applied at finiteJ/pω,
which we will use to develop the phase diagram in section 4
below.

3. Franck-Condon Factor

A quantity intimately related to the Debye-Waller factors
appearing in the self-consistency equations is the Franck-
Condon factor

This is one of many Franck-Condon factors associated with
various transitions between correlated electron-phonon states.
This particular factor characterizes the oscillator strength of the
zero-phonon line associated with a transition between a free
electron state of crystal momentumK and the polaron it forms
at the sameK; these are direct transitions, resolved by crystal
momentum. Though one is often concerned primarily with
transitions near the Brillouin zone center, we will use the full
K dependence ofF(K) across the Brillouin zone, and particularly
at the zone center and the zone boundary.

Our principal interest in zero-phonon lines in the present
context is in the possibility that they may offer an observable
means for mapping the essential polaron features on the polaron
phase diagram. Owing to the strong similarity between the
Franck-Condon factor and the Debye-Waller factors intimately
connected with the polaron effective mass, it is reasonable to
expect that an analysis of the dependence of the Franck-Condon
factor on model parameters should be able to yield the location
of the self-trapping line. Also owing to the fact that the
Merrifield method is at its best in the nonadiabatic regime and
weak coupling, it is reasonable to hope that such an analysis
would complement others made by other methods generally
more accurate (e.g., the Global-Local method), but which
deteriorate in quality at smallJ/pω andg.

The quenching of the zero-phonon line is an experimental
signature that has long been associated with the self-trapping
transition. As a function of model parameters, this quenching
occurs continuously as electron-phonon coupling is tuned from
the weak-coupling to the strong-coupling regimes. There is thus
some inherent ambiguity in the assignment of the point we
associate with the self-trapping transition; our criterion here,
as elsewhere, is to identify the self-trapping transition as the
point of most rapid changein a property that takes on
characteristically different behaviors in the weak- and strong-
coupling regimes. In the case of the Franck-Condon factor,
this criterion takes the form of an inflection point in the
dependence ofF(K) on g at fixed {Ji}.

In terms specific to our variational development

which is just the exponential of the average number of phonons
per mode in the phonon cloud.

In the 1D case, we find

as shown in Figure 2 in selected cases.
It is simple to show that in the absence of tunneling

F(K) ) e-g2 for all K in any number of dimensions. Thus, in
the J/pω f 0 limit the self-trapping features associated with
the Franck-Condon factor are found atg ) 1/x2, for anyK.
With increasing tunneling, this degeneracy is broken, and these
features fan out; the manner in which this occurs can be seen
most clearly in the 1D case, where

(see Figure 3). It is clear from these that the Franck-Condon
factor is independent ofκ at J/pω ) 0. It is also clear that
increasingJ/pω from 0 causesF(0) to broaden out to stronger
coupling and causesF(π) to narrow toward weaker coupling.

Perhaps the most interesting behavior revealed in eqs 23-
25 is that ofF(π) at J/pω ) 1/4. Using the fact that at this
particularJ/pω value

one can show that the leading dependence ofSπ on g is

This in turn implies that in the same approximation

(see Figure 4). This singular behavior in the Franck-Condon
factor at J/pω ) 1/4 suggests that the self-trapping feature
identified by an inflection point ing moves to g ) 0 at

Figure 2. Franck-Condon factors across the Brillouin zone in 1D.
J/pω ) 0.2, g ) 0.25-1.5.

∂
3Eκ

∂g3
) 0 w g ) (32)1/2

at
J

pω
) 0 (20)

F(K) ) |〈Ψ(K)|aK
†|0〉|2 (21)

F(K) ) exp(-N-D∑
q

|λq
K|2) (22)

F(κ) ) exp{-g2∆κ[1 - (2JSκ/pω) cos(κ - Φκ)]} (23)

F(κ)0) ) exp{-g2 1 - 2JS0/pω
(1 + 4JS0/pω)3/2} (24)

F(κ)π) ) exp{-g2 1 + 2JSπ/pω
(1 - 4JSπ/pω)3/2} (25)

Sπ ) exp[-g2(1 - Sπ)-3/2] (26)

Sπ ∼ 1 - g4/5 (27)

F(π) ∼ exp[-(3/2)g4/5] (28)
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J/pω ) 1/4. Indeed, on can show that, forJ/pω ) 1/4 - ε, the
Franck-Condon factor retains an initial finite negative curvature
in g, suggesting that there exists a proper inflection point at
finite g.

Thus, all these considerations suggest that the self-trapping
feature inF(0) should shift more-or-less steadily fromg ) 1/x2
at J/pω ) 0 to strongercoupling with increasingJ/pω, while
the self-trapping feature inF(π) appears to shift from the same
g ) 1/x2 to weakercoupling with increasingJ/pω, arriving at
g ) 0 at J/pω ) 1/4.

The particular results above have been obtained for the 1D
case, which enjoys sufficient tractability to admit some reason-
ably straightforward formal analysis. In higher dimensions,
numerical solution and analysis are generally more practical,
though certain exceptions warrant special attention. Throughout
the foregoing we have highlighted the particular crystal mo-
mentum values associated with the Brillouin zone center
(K ) 0) and the most remote corners of the Brillouin zone where
all the crystal momentum components take their maximum
values (K ) π). We demonstrate in the Appendix that, for these
particularK values in the isotropic cases inD dimensions, the
dependence of the Franck-Condon factors on the dimensionality
and tunneling strength is reduced to the single scaled variable

DJ. This implies that the particular results shown in Figure 3
hold not only in 1D but also in 2D and 3D when parameters
are scaled appropriately.

Results can be obtained numerically for any degree of
anisotropy and generalK; however, the qualitative nature of
the dependence on anisotropy can be inferred from Figure 3
without detailed analysis. Consider, for example,K ) 0 and
J/pω ) 0.05: The results for quasi-2D scenarios with
Jx/pω ) Jy/pω ) 0.05 and 0< Jz/pω < 0.05 are contained
between theDJ/pω ) 0.15 andDJ/pω ) 0.1 cases shown in
Figure 3. Similarly, the results for quasi-1D scenarios with
Jx/pω ) 0.05, 0< Jy/pω < 0.1, andJz/pω ) 0 are contained
between theDJ/pω ) 0.05 andDJ/pω ) 0.1 cases shown in
Figure 3.

The tunneling parameters and the effective dimensionality
determined by them are not generally subject to any practical
degree of experimental control; however, even greater changes
in the Franck-Condon factor can be induced by changing the
magnitude and/or the orientation of the crystal momentumK
probed. To the extent that it is possible to achieve some
selectivity in theK values sampled in a particular experiment,
it should be possible to induce controlled variations in the
oscillator strengths associated with these Franck-Condon factors
by, for example, varying the orientation of the sample. Such
predictable “wobbles” in the intensities of appropriately-selective
spectral probes constitutesignaturesof polaron structure that
exist only if both electron-phonon couplingand electron
tunneling are sufficiently great,without reducing the quasipar-
ticle to the status of a “mere” small polaron.

4. Phase Diagram

The overall character of the foregoing results can be sum-
marized on a diagram of the polaron parameter space in which
the loci of the knees in the polaron band energies and the
inflection points of Franck-Condon factors play the role of
rough phase boundaries separating distinct classes of polaron
structure (see Figure 5). These lines are accurately described
by the simple relations

obtained in empirical fashion by noting the exactJ ) 0 termini
as discussed in prior sections and augmenting these with the
simplest expressions in whole numbers that express the apparent
trends in a quantitatively consistent way. The restrictions on
eqs 29 and 31 are weak because such zone-center properties
are well-behaved under the Merrifield method toJ/pω sub-
stantially greater than 1/4; however, the quantitative accuracy
of the Merrifield method even at the zone center deteriorates
significantly with increasingJ/pω, warranting prudence beyond
the strictly nonadiabatic regime. On the other hand, the
restrictions on eqs 30 and 32 are strong because zone-edge
properties are strongly affected by the one-phonon continuum.

These boundaries only roughly distinguish distinct polaron
regimes because the structural changes occurring in the nona-
diabatic regime are quite smooth and broad, with changes in

Figure 3. Franck-Condon factors inD dimensions at the zone center
(upper curves) and at the most extreme point of the Brillouin zone
(κi ) π) for DJ/pω ) 0-0.25.

Figure 4. log(-ln F(K)) vs log g, allowing the power ofg in the
exponent of the Franck-Condon factor to be ascertained. Curves are
coded to correspond to Figure 3. Zone center (lower curves) and zone
edge (upper curves) inD dimensions forDJ/pω ) 0, 0.05, 0.1, 0.15,
0.2, and 0.25.

gE0 ∼ (32)1/2(1 + 2
3

DJ

pω), DJ/pω j 1/4 (29)

gEπ ∼ (32)1/2(1 - 2
3

DJ

pω), DJ/pω , 1/4 (30)

gF0 ∼ (12)1/2(1 + 4
DJ

pω)2/3

, DJ/pω j 1/4 (31)

gFπ ∼ (12)1/2(1 - 4
DJ

pω)1/2

, DJ/pω < 1/4 (32)
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different aspects of polaron structure occurring with less
synchronization than is seen in the adiabatic regime. This is
seen clearly in the fact that the critical features of the band
energies and the Franck-Condon factors are significantly
separated ing in the J/pω f 0 limit, and while trending
similarly with increasingJ/pω, remain well separated over the
entire nonadiabatic regime.

This disperse character of the collection of self-trapping-
related loci is not an artifact of the Merrifield method, of the
particular parameter regime, nor of the particular physical
quantities used to locate transition effects. A similar and
complementary dispersion has been found at somewhat larger
J/pω in 1D using the Global-Local method, based on the
analysis of physical quantities such as the ground-state energy,
kinetic energy, phonon energy, electron-phonon interaction
energy,20 effective mass,21 and electron-phonon correlation
functions.22 In such analyses, the self-trapping loci attributable
to different zone-center physical quantities have been found to
cluster increasingly tightly with increasingJ/pω, permitting an
empirical self-trapping curve

to be identified that appears to accurately describe the central
trend of such clusters of data over essentially the entire adiabatic
regime.

Similarly, a zone-edge curve

in 1D has been identified that appears to accurately describe
the characteristic changes in the outer energy band that signal
the onset of significant narrowing of the polaron energy band,
commencing the process that develops into the self-trapping
transition with increasing coupling strength.

It is telling to combine the empirical curves (eqs 33 and 34)
abstracted from our prior 1D Global-Local analyses with the
complementary curves (eqs 29, 31, and 32) that follow from
our present analysis by the Merrifield method. This comparison
is presented in Figure 6.

It is clear that zone-center properties follow a common pattern
of behavior, relatively indifferent to the crossover from the
nonadiabatic into the adiabatic regime, but for the possible role
the latter may play in setting the scale over which the disperse
self-trapping loci of the nonadiabatic regime begin to cluster
more tightly toward the more sharply-defined trend in the
adiabatic regime. This dispersity does not vanish suddenly at
the crossover, but is apparent as well in the dispersity of similar
loci found under the Global-Local method at smallJ/pω still
greater than 1/4.

Further, it is interesting and surely no accident that the
Merrifield zone-center lines (eqs 29 and 31) intersect, that this
intersection falls very nearly upon the Global-Local zone-center
line (eq 33), and that this cluster of intersections coincides well
with the first appearance of discontinuities in the solutions of
the Merrifield method. It was, in fact, the set of such “critical
points” (Jc/pω, gc) ascertained from our sequentially-refined
variational calculations (Merrifield method,18 Toyozawa method,19

Global-Local method16) that first led us to identify the simple
empirical curve (eq 33) as a convenient method-independent
approximant to the real physically-meaningful self-trapping line.
The “critical” appearance of solutions near such points (Jc/pω,
gc) is, of course, a methodological artifact, and we should view
the intersections of the several zone-center lines nearJ/pω ≈
0.9 as an artifact as well; the physical self-trapping line surely
bends smoothly through this region, seamlessly joining the
central trend of the nonadiabatic loci with the more sharply-
defined trend that develops at higher adiabaticity.

These zone-center results of the Merrifield method suggest
an answer to one of the more empirical questions left open by
our prior Global-Local analyses. Though quite accurate over
a large range ofJ/pω, it has seemed unlikely that the dependence
of the empirical curvegST on (J/pω)1/2 should continue
unregularized all the way down toJ/pω ) 0. If we are to
continue to regard the physically meaningfulgST as representing
a central trend in the inherently disperse set of self-trapping
loci even asJ/pω vanishes, the present results suggest that the
leading dependence ofgST onJ/pω should not persist as a square
root, but yield to a more pedestrian linear dependence

wherea is a constant of order unity.

Figure 5. Polaron phase diagram in the nonadiabatic regime according
to the Merrifield method inD dimensions. Diamonds: location of
inflection points inF(π). Circles: location of inflection points inF(0).
Squares: location of the knee inE0. Triangles: location of the knee in
Eπ. Solid line: eq 32. Long-dashed line: eq 31. Short-dashed line:
eq 30. Chain-dotted line: eq 29.

gST ) 1 + (J/pω)1/2 (33)

gN ) 1 + ( J

pω)1/2

- [8( J

pω
- 1

4) + (23)8]-1/8

(34)

Figure 6. Polaron phase diagram combining the empirical curves (eqs
29, 31, and 32) based on the present analysis employing the Merrifield
method forDJ/pω < 1/4 with the complementary empirical curves
(eqs 33 and 34) based on independent analyses by the Global-Local
variational method forJ/pω > 1/4 in 1D.

gST ∼ 1 + a
J

pω
,

J

pω
< 1

4
(35)
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It is likewise clear that the zone-edge loci follow a common
pattern of behavior, albeit one that is exquisitely sensitive to
the crossover from the nonadiabatic into the adiabatic regime.
Although the loci illustrated above and below this crossover
are drawn from different physical properties (Franck-Condon
factors from the Global-Local method are not available, and
the Merrifield band energies near the zone edge are not
meaningful in and beyond the crossover regime), they are closely
related and reflect the same, if complementary, underlying
physical behavior.

We are led to view the results of the Merrifield method in
the nonadiabatic regime and those of the Global-Local method
in the adiabatic regime as mutually confirming, and describing
one consistent set of self-trapping phenomena at allJ/pω.

In the adiabatic regime, it is quite straightforward to view
the two linesgST andgN as dividing the polaron parameter space
into a small polaron regime at strong coupling, a large-polaron
regime at weak coupling, and an intermediate regime occupied
by transitional structures. In the nonadiabatic regime, it is
likewise clear that there is an unambiguous small polaron regime
at strong coupling; moreover, it is noteworthy that the nona-
diabatic small polaron states are continuously deformable into
the adiabatic small polaron states without encountering transition
behavior in any basic polaron property, so that there is no formal
distinction to be made between nonadiabatic and adiabatic small
polarons. A complementary observation can be made about large
polarons; although large polarons as we have thus far character-
ized them reside in the adiabatic regime, there is no formal
distinction to be drawn between large polarons at greater or
lesser electron-phonon coupling strengths since these are
continuously deformable into each other without encountering
any transition behavior. The intermediate regime can be defined
in similar terms as that in which transition behavior is found in
some basic polaron property at every point; for example,
although the linesgST (zone center) andgN (zone edge) are only
discrete curves, the domain between them is dense with similar
curves associated with the occurrence of transition behavior at
generalκ values.

These observations lead us to consider the more darkly-shaded
region of Figure 6 at the weak-coupling end of the nonadiabatic
regime. The transition line (eq 32) associated with the zone-
edge Franck-Condon factor and the more limited, qualitative
information available in the Merrifield band-edge energies
(eq 30) suggests that this regime isdisconnectedfrom both the
small polaron regime and the large polaron regime in the sense
of continuous deformability as used above. Provided that this
nonadiabatic weak-coupling regime is not dense with transition
loci, which seems quite unlikely, it would appear that this regime
is occupied by a polaron structure that is neither small nor large
nor of a transitional nature that would identify it with the
intermediate regime.

Indeed, some very basic polaron properties behave in
qualitatively distinct ways in this insular regime, perhaps
foremost being the polaron radius as given by the polaron
Wannier function. Intuitively, one expects the polaron radius
by any definition to decrease monotonically with increasing
electron-phonon coupling, and this is generally the case in the
regimes we have here characterized as the small polaron regime
and the large polaron regime. Even in the nonadiabatic weak-
coupling regime now under discussion, the radius of the phonon
cloud associated with zone-center polarons has an initial width
of order (2Ji/pω)1/2 along the i axis,26 and decreases with
increasing coupling strength.

The polaron Wannier function, however, is a construct of
theentirepolaron energy band, being a superposition of polaron
Bloch states of everyK; as such, it is a localized state that can
be viewed as energy band theory’s own answer to the inverse
problem of determining the identity of the localized quasiparticle
whose dynamical properties are manifested in the polaron energy
band. The real-space width of this state can be gauged in various
ways, among them being a variance measure of the electron
density within the polaron Wannier state.

In present terms, we may construct polaron Wannier states
from the trial Bloch states in the fashion

from which we may construct the electron density profile as

Using this density, we may construct a variance tensor

in terms of which the spatial variance of the electron density in
the polaron Wannier state may be given in an arbitrary direction.
In the particular case of measurement along thex axis in three
dimensions, for example, this result after summing over they
andz axes takes the form

where

With further manipulation it can be shown that

The spatial variance of the localized electron density within the
polaron is thus seen to be the average over all phonon modes
and over polaron crystal momenta in the measurement direction
of a mean square measure of the amount of distortion present
in the phonon amplitudes along the measurement direction.

Without further explicit calculation, this relationship provides
a means of understanding what is distinct in the weak-coupling
polaron behaviors found in the nonadiabatic and adiabatic
regimes. In the adiabatic regime, the weak-coupling polaron
band is nearly identical to that of the free electron in the inner
Brillouin zone, but is strongly flattened in the outer Brillouin
zone where the effects of interaction with the one-phonon
continuum are severe. The phonon amplitudes exhibit strong
changes inK which, through eq 41, are associated withbroad
polaron Wannier states. With increasing electron-phonon
coupling the severity of theseK-dependent distortions decreases,
resulting in thenarrowing of the polaron Wannier state. In
qualitative terms, this narrowing trend is what is expected of
large polarons.

|Φ(n)〉 ) N-D/2∑
K

e-iK‚n|Ψ(K)〉 (36)

Fr ) 〈Φ(0)|ar
†ar|Φ(0)〉 (37)

σij
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ri,rj

rirjFr (38)
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(rx

2/Nx
2)e-i(κx-κx′)rx〈{λq
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(κx′,0,0)}〉 (39)

〈{λq
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1
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Spectral Probes of Polaron Structure J. Phys. Chem. A, Vol. 103, No. 49, 199910423



In the nonadiabatic regime, however, quite a different
situation is found. At weak coupling, the polaron band is nearly
identical to that of a free electron atall K, and in the limit of
vanishing coupling is completely undistorted. The associated
phonon amplitudes are not only very small, but are also very
weakly distorted inK which, through eq 41, implies the complete
localization of the polaron Wannier state on a single site as
g f 0. Conversely, with increasing electron-phonon coupling,
the presence of the higher-lying one-phonon continuum is felt
more strongly at higherK, resulting in an enhancement of
phonon amplitudes in the outer zone with which is associated
a slight flattening of the polaron energy band. Thisgrowth in
K-dependent distortion results in abroadeningof the polaron
Wannier state with increasing electron-phonon coupling until
a transition is made into the small polaron regime.

Although suchcompactpolarons are straightforwardly un-
derstood, that they are completely localized in the weak-coupling
limit and broaden with increasing electron-phonon coupling
suggests that they be regarded as distinct from both the large
polarons and small polarons that dominate the outer reaches of
the polaron parameter space.38 Moreover, that the compact
polaron regime appears to bedisconnectedfrom both the large
polaron regime and the small polaron regime by observable
transition behavior suggests that such distinctions may be
important to the clear classification of polaronic systems.

5. Conclusion

Our study of the Holstein model has focused on the basic
properties of observable zero-phonon lines in optical spectra,
specifically, the polaron ground-state energies that are principal
determinants of the spectral position of such lines and the
Franck-Condon factors that are principal determinants of the
oscillator strength of such lines. We have found in these results
several properties that facilitate both the application of these
findings to experiments on real bulk materials and the inter-
pretation of the experimental results in terms of underlying
polaron structure.

First, although quantitative results can be obtained for any
polaron wave vectorK, we have found that, at the extremes of
isotropic polaron bands, at the Brillouin zone center, and at its
most remote corner, the dependence of the Franck-Condon
factor on real-space dimensionalityD and the elementary
tunneling parameterJ reduces to the single scaled parameter
DJ. This permits a straightforward understanding of how
observations in systems of reduced effective dimensionality, for
example, can be expected to be related to observations in bulk
systems.

Second, with some additional care, this general trend in the
dependence of the Franck-Condon factors on dimensionality
can be seen to be similar to that which can be expected in the
K dependence of the Franck-Condon factor in a system of fixed
dimensionality; for example, in changing the orientation of the
probed wave vector from [1,1,1] to [1,1,0] to [1,0,0]. Such
experimentally-controlled variations in the Franck-Condon
factor (and its associated zero-phonon line) of a fixed system
constitute a signature that can be associated with specific polaron
structure.

Third, beyond such quantitative characteristics, we have found
that the Franck-Condon factors at the Brillouin zone center
and at the extreme Brillouin zone edge constitute particularly
direct means of revealing the changes in polaron structure that
are associated with the self-trapping transition. That is, it appears
possible to map out the polaron phase diagram from surveys
utilizing Franck-Condon factors alone. Through such consid-

erations, here extended for the first time to the nonadiabatic
weak-coupling regime, we have been able to complete a
systematic appraisal of polaron structure spanning all regimes.
The delineation of transition curves by means of the Franck-
Condon factors has compelled us to distinguish a third kind of
characteristic polaron structure, thecompactpolaron, from the
more familiar notions of thesmall polaron andlarge polaron.
It is suggested that each of these three classes of polaron
structure is separated from the others by an intermediate regime
in which transition behavior is found in some basic polaron
properties, but that this classification is essentially complete.

Thus, suitably discriminating experimental studies of the
detailed behavior of zero-phonon lines would appear to afford
versatile, powerful, and interpretable means of deducing the
structure of polarons in real materials. Suitably constructed
surveys of such structure in a variety of materials should be
capable of mapping such globally-important features as the
polaron self-trapping line, providing experimental tests of the
proposed polaron phase diagram.
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Appendix. Dimensional Scaling

In some of our illustrations of specific results, we take
advantage of a certain scaling property that holds under the
Merrifield method at the Brillouin zone center and at selected
points on the Brillouin zone boundary. The demonstration of
this property utilizes the fact that the Debye-Waller phases
Φµ

K vanish at the Brillouin zone center and everywhere on the
Brillouin zone boundary, and the fact that

as follows from eq 9.
Restricting discussion to the zone center (K ) 0) and any of

the most extreme corners of the Brillouin zone (K ) π), we
find that the fundamental variational amplitudes can be ex-
pressed in the form

Now further restricting to the isotropic case, we find
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It is the reduction of the dimension andJ dependencies of the
principal quantities to the simple combinationDJ that is
responsible for the simplicity of our main results.
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